Programming of the generalized nonlinear paraxial equation for the formation of solitons with Mathematica

نویسندگان

  • Frederick Osman
  • Robert Beech
چکیده

We present the nonlinearity and dispersion effects involved in the propagation of optical solitons which can be understood by using a numerical routine to solve the generalized nonlinear paraxial equation. A sequence of code has been developed in Mathematica to explore in depth several features of the optical soliton’s formation and propagation. These numerical routines were implemented through the use of Mathematica and the results give a very clear idea of this interesting and important practical phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma

We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...

متن کامل

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

Propagation properties of non-paraxial spatial solitons

We present an analysis and simulation of the non-paraxial nonlinear SchroÈ dinger equation. Exact general relations describing energy ̄ ow conservation and transformation invariance are reported, and then explained on physical grounds. New instabilities of fundamental and higher-order paraxial solitons are discovered in regimes where exact analytical non-paraxial solitons are found to be robust...

متن کامل

Helmholtz algebraic solitons

We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. T...

متن کامل

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JAMDS

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2005